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Abstract— Quantitative assessment of pain is vital progress
in treatment choosing and distress relief for patients. However,
previous approaches based on self-report fail to provide objec-
tive and accurate assessments. For impartial pain classification
based on physiological signals, a number of methods have been
introduced using elaborately designed handcrafted features. In
this study, we enriched the methods of physiological-signal-
based pain classification by introducing deep Recurrent Neural
Network (RNN) based hybrid classifiers which combines auto-
extracted features with human-experience enabled handcrafted
features. A bidirectional Long Short-Term Memory network
(biLSTM) was applied on time series of pre-processed signals
to automatically learn temporal dynamic characteristics from
them. The handcrafted features were extracted to fuse with
RNN-generated features. Finely selected features from biLSTM
layer output and handcrafted features trained an Artificial
Neural Network (ANN) to classify the pain intensity. The hand-
crafted features enhance the RNN classification performance
by complementing RNN-generated features. With our accuracy
reaching 83.3%, comparison results on an open dataset with
other methods show that the proposed algorithm outperforms
all of the previous researches with higher classification accuracy.
Therefore, this research is a good demonstration of introducing
hybrid features for pain assessment.

I. INTRODUCTION

Pain is defined as a distressing experience complicated
with tissue damage and cognitive suffering. Uncontrolled
pain not only deteriorates the quality of life but also en-
dangers the immune system, impedes healing after surgery
and even exacerbates tumor growth [1]. Moreover, wrong
pain assessment leads to disproportionate treatment, which
may cause risks for the patients [2]. Therefore, valid and
reliable pain assessment is necessary for choosing adequate
treatment and relieving physical and psychological distress.

To date, researchers still fail to classify pain in an ordinate
way. As a personal experience, pain is uttered in different
ways because of the subjects’ discrepancy in pain sensitivity
so that it can be exaggerated or attenuated easily. Mean-
while, the multidimensional nature of pain also hinders pain
classification development [3].

The predominant pain assessment guideline is self-report,
i.e. the patient quantifies the pain level by himself. Neverthe-
less, this empirical method fails when respondents lose the
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cognitive or verbal ability, e.g., demented patients. In con-
trast, physiological signals, as spontaneous responses towards
pain, exhibit the potential reliability to be the manifestation
of pain.

Regarding the physiological signals, different classifiers
have been developed to do the bio-signal classification
practices. In terms of the classic classifiers, such as Sup-
port Vector Machine (SVM), Latent Dirichlet Allocation
(LDA), and K-Nearest Neighbors (KNN), rely on empir-
ical experiments and expert experience to extract useful
features, and the classification performance is limited by
the finite accepted handcrafted features. Nowadays, with
the extensive application of deep learning algorithms in
bio-signal feature extraction, suitable representations can be
generated automatically; thereby, deep learning methods can
complement and even substitute the classic methods due to
convenience and effectiveness. Based on existing research,
deep neural network, e.g., Convolutional Neural Network
(CNN), outperforms the majority of classifiers in certain bio-
signal domains [4]. Nevertheless, regarding the drawback
of CNN, CNN ignores the temporal characteristics of the
bio-signal series, which are of tremendous significance for
physiological signals.

Given the problem above, deep Recurrent Neural Network
(RNN) is introduced for bio-signal classification. Thanks to
the structure that connections between nodes form a directed
graph along a temporal sequence, RNN exhibits the temporal
dynamic characteristic reliably and automatically.

Collectively, a Hybrid RNN classifier was employed for
pain intensity classification in our research. RNN, which
involves a bidirectional LSTM network, can generate the
abstract time representations of the pain data stream; mean-
while, accepted handcrafted features, which were included in
our research, have been considered powerful indexes for pain
classification in clinical pain relevant research. By fusing the
handcrafted features and RNN generated features, the expert
experience and the temporal characteristics can be utilized
and the classification performance can be improved. To be
specific, the best representations were selected from all RNN
generated features and finely selected handcrafted features,
and trained another shallow Artificial Neural Network (ANN)
to classify the pain intensity.

It should be noted that few work relevant to RNN is
conducted in the pain binary classification field [5]. Due
to the feature fusion strategy, the handcrafted features were
combined with RNN generated characteristics so that the
reliability and performance of the algorithm are enhanced.
Our Leave-One-Subject-Out accuracy results were conducted



on an open database, which exceed the majority of other
results in previous researches and are comparable to the
state-of-art outcome, without introducing non-physiological
observations such as video stream.

The remainder of this work is organized as follows. The
details of the dataset are illustrated in the second section. The
preprocessing procedure, RNN, feature selection, and fusion
methods are included in the third section. Subsequently,
a detailed description of the results corresponding to the
specific methods is exhibited in the fourth section.

II. DATASET

The experiments were conducted with the BioVid Heat
Pain database [6]. Because the part B of the database contains
abnormal data, the majority of the relevant researches choose
part A as a database, including us. Prior to data collection,
each subject’s pain threshold and tolerance threshold were
determined. Four temperatures between the two thresholds
were chosen as stimulation’s temperatures. Each subject was
stimulated for 20 times for every stimulation intensity (P1 to
P4). Together with 20 baseline measurements, a total number
of 100 experiments were carried out for each subject. The
following bio-signals were collected: (1) skin conductance
(SC), (2) electrocardiogram (ECG), (3) electromyogram
(EMG). The preprocessed data were cut into 5.5 seconds for
every stimulus. In total, the dataset contained 8700 samples
from 87 subjects, equally distributed in 5 classes: no pain
(BLN), and pain levels P1 to P4. With the sampling rate of
512Hz, every data series have 2816 points.

The Leave-One-Subject-Out (LOSO) validation was car-
ried out on the PartA of the Biovid Heat database, and the
accuracy is compared with other LOSO results on the same
database.

III. METHODS

A. Data Preprocessing

According to prior research, skin conductance (SC), elec-
tromyography (EMG), and electrocardiography (ECG) were
chosen as target signals. Noise and artefacts within the
recorded data were ruled out by applying appropriate signal
preprocessing techniques. A third-order lowpass Butterworth
filter with a cut-off frequency of 4 Hz was applied to the
skin conductance signals. The EMG signals were filtered
by applying a fourth-order bandpass Butterworth filter with
a frequency range of [20, 50] Hz. Finally, a third-order
bandpass Butterworth filter with a frequency range of [0.1,
50] Hz was applied to the ECG signals. Because of the group
delay of the SC filter, the first 118 points were deleted.
Aiming at synchronizing the EMG and ECG signals with
the SC signals, the last 118 points of EMG and ECG were
removed. In other words, every signal had 2703 points after
preprocessing.

B. Deep Recurrent Neural Network

Recurrent Neural Networks comprise a dominant class
of temporal predictors and classifiers. To allow information
to be stored across arbitrary time lags, Long Short-Term

TABLE I
TRAINING LAYERS AND DETAILS

Layer Details
Input Layer [SC, ECG, EMG]

biLSTM
Layer

Hidden Unit Size: 200
State Activation Function: tanh
Gate Activation Function: Sigmoid

Fully-connected Layer
Tanh Layer
Output Layer Softmax

Fig. 1. Bidirectional LSTM Structure

Memory networks adopt ‘forget gates’ to fade the out-of-
date information slowly and reset the memory blocks with
prior and immediate information [7]. Bidirectional LSTM
reinforces LSTM by learning time characteristics bidirection-
ally. Fig.1. shows the structure within a bidirectional LSTM
network, where xi is inputted backwardly and forwardly into
the networks and the state of Wb is updated by forget gate
and input gate’s products based on its current state, input
xi, prior node’s output Ci and ai. To date, RNN has been
applied widely in the domain of physiology signal, e.g.,
biLSTM was designed to extract pulse rate variability from
photoplethysmography data streams automatically [8].

In this study, the preprocessed SC, ECG, and EMG signals
are connected in parallel and inputted into the network.
Subsequently, a bidirectional LSTM is used for temporal
representation generation. The softmax layer outputs the
possibility of each category, and the basic RNN classification
results are obtained. Then, the outputs of the biLSTM layer
are extracted to fuse with handcrafted features.

To train this subject-independent network, data from the
Biovid Heat Database were used, which include 87 subjects’
responses towards four pain levels’ stimulus and no pain
stimulus for 20 times per level. The accuracy was tested on
one left person, and the network was trained on the other 86
people. Hyper-parameters of RNN can be found in Table I.

C. Feature Extraction

This research has mainly focused on two RNN models:
basic RNN model, and hybrid RNN-ANN model. The second
model required handcrafted features to fuse with biLSTM
layer output. The SC, ECG, EMG handcrafted features that



widely used in prior pain researches were included in this
research.

1) Skin Conductance Feature: The following features
were extracted.
• Maximum
• Range
• Standard deviation
• Inter-quartile range
• Root mean square
• Mean
• Mean absolute value of the first differences

1

N − 1

N−1∑
i=1

|xi+1 − xi| (1)

where N is the number of the point in a single signal
stream

• mean absolute value of the second differences

1

N − 2

N−2∑
i=1

|xi+2 − xi| (2)

where N is the number of the point in a single signal
stream

• Mean absolute value of the first differences of the
standardized signal

• Mean absolute value of the second differences of the
standardized signal

• Skewness
• Kurtosis
2) Heart Rate Feature: Pan-Tompkins algorithm for QRS

complex detection was employed to detect the R wave [9].
Then the following features were extracted:
• Mean of the interbeat intervals (IBI)
• Root mean square of the successive differences

(RMSSD)
• Mean of the standard deviations of the IBIs (SDNN)
3) Electromyography Feature: The following features

were extracted as follows.
• Maximum
• Standard deviation
• Mean absolute value of the first differences
• Mean absolute value of the second differences
• Mean absolute value of the first differences of the

standardized signal
• Mean absolute value of the second differences of the

standardized signal

D. Feature Selection and Fusion

The handcrafted features and RNN-generated features
were fused to expect the final results. Because the biL-
STM layer contains 200 units, the number of the output
of the biLSTM layer is 400, which is much larger than
the handcrafted features’. Besides, the significance of the
handcrafted features and 400 RNN-generated features had
not been weighed. Therefore, Minimum Redundancy Maxi-
mum Relevance method (MRMR) was employed to rank the
significance of every feature to select the representations.

Fig. 2. ANN Fusion Structure

Minimum Redundancy Maximum Relevance method
(MRMR) uses mutual information as a proxy for computing
relevance and redundancy among characteristics and ranks
the significance of features. The relevance of the set S and
the redundancy of S are defined with mutual information I.
The MRMR algorithm ranks features through the forward
addition scheme by using the mutual information quotient
(MIQ) value.

max
x∈Sc

MIQx = max
x∈Sc

I(x, y)

|S|
∑
z∈S

I(x, z) (3)

MRMR was employed to select 50 features whose signif-
icance ranked highly among 400 biLSTM layer outputs and
21 handcrafted features. In this way, reliable representations
were chosen, and adverse representations were excluded.

As is shown in Fig.2., 400 biLSTM layer outputs and
21 handcrafted features went through the feature selection
procedure, and 50 features were chosen to be the input of the
ANN. The ANN included a hidden layer with 100 units, and
the predicted probabilities of each category were outputted
in the output layer.

IV. RESULTS

Four methods are chosen in this study for comparison,
which are based on random tree with physiological signals
and video signals [11], random tree and SVM with the video
signals [10], ANN [12] and random tree with physiological
signals and video signals [13]. These methods are chosen
because their methods represent the most existing methods in
pain classification field, and they were conducted on the same
database as our research; thus, it is reasonable to compare
with these results.

The comparison results between methods and the proposed
approach are illustrated in Table II. Our hybrid RNN method
outperforms all methods because our results surpass theirs in
every pain level. On the one hand, this research shares almost
the same handcrafted features with other classic classification
works; therefore, the limited ability of handcrafted features
is proved by comparing the hybrid RNN result and classic



TABLE II
ACCURACY EVALUATION:COMPARE WITH OTHER METHODS

Approach SIGNALS BLN vs. P4 BLN vs. P3 BLN vs. P3 BLN vs. P1

Werner et al. [10] Video 72.4 64.0 56.0 53.3
Werner et al. [11] Physiological Signal and Video 80.6 72.0 60.5 49.6
Daniel et al. [12] Physiological Signal 82.75 70.04 59.71 54.22
Kächele et al. [13] Physiological Signal and Video 83.1 - - -
Our Approach (RNN) Physiological Signal 82.7 73.7 64.2 58.3
Our Approach (Hybrid RNN-ANN ) Physiological Signal 83.3 75.1 64.2 58.5

results. Besides, Werner [11] has used video signals, which
should have complemented the physiological indexes and
overtaken other methods but failed. Kächele [13] used ran-
dom forest methods and achieved a higher result, 83.1%, than
our basic RNN result. However, he introduced video signals
into his model. Thus it is understandable why his result
surpasses our basic RNN’s performance by a little margin.
On the other hand, compared to Daniel’s ANN method [12],
our hybrid RNN results are superior to his results, and proved
that the hybrid RNN-ANN method also reinforces the ANN
performance considering that we shared almost the same
handcrafted features.

Regarding our two classification methods, the hybrid RNN
improves the basic RNN’s performance in BLN vs. P4 and
BLN vs. P3, and the other two results do not demonstrate a
significant discrepancy. The RNN and handcrafted feature
selection results can explain this. Among all of the 400
biLSTM layer outputs and 21 handcrafted features, two or
three handcrafted features, including the skewness of SC and
IBI, always ranked very high based on MRMR’s significance
score when classifying the BLN vs. P4 and BLN vs. P3.
The handcrafted features complement the RNN generated
features effectively and thus contribute to the hybrid RNN’s
performance. However, in the BLN vs. P2 and BLN vs. P1
experiments, far less handcrafted features were chosen after
MRMR. In other words, when classifying low pain intensity,
handcrafted features are not as reliable as RNN generated
features are. Without the handcrafted features’ influence, the
majority of the ANN’s inputs are RNN generated features;
therefore, the hybrid RNN model exhibits quite similar
results to the basic RNN’s.

V. CONCLUSIONS
In this study, we first introduced deep Recurrent Neural

Network (RNN) to extract temporal dynamic characteristics
from the time series of pre-processed signals automatically.
At the same time, 21 handcrafted features were obtained
from skin conductance (SC), electromyography (EMG) and
electrocardiography (ECG) signals. Features finely selected
from the biLSTM layer and handcrafted features trained an
ANN to classify pain intensity. Comparison results on an
open dataset with other methods show that the proposed algo-
rithm outperforms most of the previous researches with much
higher classification accuracy, and the hybrid RNN model
improves the basic RNN’s high pain intensity classification
performance by virtue of handcrafted features. Our strategy

also achieves comparable results with state-of-the-art without
involving additional video streams, which are required by the
latter. To our best knowledge, this is the first time that RNN
is conducted in the pain binary classification field only with
physiological signal, and is a good example of introducing
hybrid features for pain assessment.
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