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Abstract—The smallest eigenvalue of a grounded Laplacian
matrix plays a pivotal role in complex networks, such as system
control, convergence rate and the robustness of a system. In this
paper, we focus on the node selection problem of maximizing
the smallest eigenvalue of the grounded Laplacian matrix for
a graph with n nodes and m edges, under an upper bound
constraint k � n. We show this combinatorial optimization
problem is NP-hard and the objective function is monotone but
non-submodular. Since the optimal solution cannot be calculated
directly, we adopt a greedy strategy to solve this problem by
selecting one node at a time. Specifically, we employ derivatives
and matrix perturbations to make our algorithm efficient with a
time complexity of Õ(km), where Õ(·) notation suppresses the
poly(logn) factors, and also applicable to large-scale networks.
We conduct numerous experiments on different networks of
various sizes to demonstrate the superiority of our algorithm in
terms of efficiency and effectiveness compared to other methods.

Index Terms—Grounded Laplacian, spectral properties, graph
mining, linear algorithm, matrix perturbation, derivative, pin-
ning control, convergence speed.

I. INTRODUCTION

Spectral theory has already a long history and widespread
usage in different scenarios. The eigensystem of adjacency
matrix can evaluate network topology for immunization and
infrastructure study. Besides, the eigensystem of Laplacian
matrix can measure the network’s connectivity. Our study
focuses on a variant of Laplacian matrix, grounded Laplacian
matrix, whose smallest eigenvalue matters broadly.

Grounded Laplacian matrix, a principal submatrix of the
Laplacian matrix, functions as a significant model in network
control study. Due to the impossibility of controlling all nodes
in the network, steering a fraction of nodes is a significant al-
ternative, which relates to grounded Laplacian matrix closely.
Both pinning control and leader selection problem employ
grounded Laplacian matrix as their model, and the eigenvalue
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of the grounded Laplacian matrix performs as efficient metrics
in diverse control systems.

Specifically, the smallest eigenvalue of grounded Laplacian
matrix can not only quantify node-selection scheme for pin-
ning control strategy but also evaluate convergence rate and the
system H∞ norm in consensus dynamics. Then a spontaneous
question arises as what nodes should be controlled with respect
to the smallest eigenvalue of grounded Laplacian matrix.
Nevertheless, prior researches remain elusive on scalable node-
selection strategy for the smallest eigenvalue of grounded
Laplacian matrix.

Therefore, our work focuses on the SMALLEST EIGEN-
VALUE OPTIMIZATION problem: Given a graph G = (V,E)
with |V | = n nodes and |E| = m edges, and an integer
0 < k < n, how to select a subset S ⊂ V and |S| ≤ k
such that the smallest eigenvalue of the grounded Laplacian
matrix induced from the graph and grounded node set S is
maximized.

The SMALLEST EIGENVALUE OPTIMIZATION problem is
inevitable and difficult. Preceding study on its inverse pro-
portion with network size implies the necessity of the re-
fined node-selection scheme on a large network. However,
the fundamental properties of the problem resist advances.
Firstly, its combinatorial nature leads to exponential compu-
tation complexity so that the brute-force algorithm fails even
in medium-sized networks. Secondly, without submodularity,
greedy algorithms, as the conventional resort for NP-hard
problems, lose their approximation guarantee. To our best
knowledge, the computation techniques for this problem are
either empirical or exclusive for small networks.

Our work is a comprehensive study of the SMALLEST
EIGENVALUE OPTIMIZATION problem. We prove the NP-
hardness and non-submodularity of this combinatorial op-
timization problem. Then we propose a nearly linear time
heuristic algorithm. It capitalizes on two analysis methods:
network derivative mining, and matrix disturbance theory, to
evaluate the eigen-gap for node selection. The consistency
between these two methods justifies the reliability of our
analysis. Sufficient experiments and excellent results warrant
the performance of our algorithm.

II. RELATED WORKS

Grounded Laplacian matrix was first proposed in the study
of linear system with nodes grounded [1] and is later employed
in pinning control and consensus model study. Its smallest
eigenvalue value relates to the efficacy of pinning control
strategy, consensus convergence rate and system H∞ norm,
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which are studied extensively. We introduce the relation be-
tween these applications with the smallest eigenvalue in turn.
Then we present extant researches on this problem.

Pinning control is a strategy to steer a fraction of nodes
to achieve synchronization or a targeted state on the whole
network [2], [3], [4], [5]. To achieve the targeted state, it is
impossible and unnecessary to control all nodes, and therefore
pinning control was proposed [2], [3]. However, regarding
which nodes to be controlled, different prior studies provide
varied strategies, some of which are exclusive for specific net-
works or even contradict with each other. For example, max-
degree scheme is recommended for small number of controlled
nodes [3], [6], [7], while nodes with small degrees outperforms
when the number grows [8], [9]. Besides, betweenness central-
ity [10] and ControlRank [11] are also pinning node-selection
strategies but for specific situations. After the relation between
the smallest eigenvalue of the grounded laplacian matrix and
effectiveness of pinning node-selection is found [12], [13],
detailed properties is investigated [9].

The grounded Laplacian matrix also functions in
continuous-time diffusion dynamics, especially the opinion
dynamics, where individuals are consistently exchanging
opinions with their neighbors [14]. The opinions of each
individual reach an equilibrium for some models [15],
[16], [17], [18], and the convergence rate equals to the
smallest eigenvalue of the grounded Laplacian matrix [19].
Its properties have been studied in [20], [21] and some
researches investigate how to maximize the convergence rate
by leader selection [22], [23].

In leader-follower consensus dynamics, the robustness is
defined based on the system H2 or H∞ norms, which map
the grounded Laplacian matrix to the robustness metrics. And
the system H∞ is the reciprocal of the smallest eigenvalue
of the grounded Laplacian matrix. The relationship between
it and robustness to disturbances or time delay have been
studied in some fields, including intelligent transportation [24],
[25] and power systems [26]. Tight characterizations for the
system norm have been provided in [27], and one leader-
selection problem to minimize the robustness metric H∞ is
also considered.

Recent years witnessed different methods to optimize the
smallest eigenvalue of grounded Laplacian matrix by node
selection. A submodular approach is developed and allowed
edge weight negative [28]. Besides, a feature-embedded evo-
lutionary algorithm is proposed [29]. Close relation with the
resistance distance is shown, which leads to a new approach
[30]. And max-degree strategy is improved based on the eigen-
value’s properties [9]. However, there is a lack of sufficient
experiments on diverse and large-scale networks among these
researches.

III. PRELIMINARY

In this section, we introduce the concepts relevant to the fo-
cus of this study, including the graph and associated matrices,
and properties for later use.

A. Notations and graph
To point out firstly, in this paper scalars in R are denoted by

normal lowercase letters like a, b, c, vectors by bold lowercase
letters like a , b, c, sets by normal uppercase letters like
A,B,C and matrixes by bold uppercase letters like A,B ,C .
We use the notation λ(A) to denote the smallest eigenvalue of
matrix A. For the element in a vector or a matrix, aaai is used
to denote the i-th element in the vector aaa , and Aij is used
to denote the entry (i, j) of matrix A. Specifically, we use
0 and I to denote zero matrix and identity matrix of proper
dimension, notation e i to denote a vector with i-th element
being 1 and others 0, and notation E ij to denote a matrix with
the entry (i, j) being 1 and others being 0.

We denote an undirected connected binary graph as G =
(V,E) where V is the set of nodes with size |V | = n and
E ⊆ V × V is the the set of edges with size |E| = m. Let
A ∈ {0, 1}n×n be the adjacency matrix for graph G where
Aij equals 1 if node i and j are connected and 0 otherwise.
The neighbors of node i ∈ V in graph G are given by the
set Ni = {j ∈ V |(i, j) ∈ E}. The degree of node i is
represented as di = |Ni| and the degree matrix is defined as
D = diag(d1, d2, . . . , dn) accordingly. The Laplacian matrix
for the graph is given by L = D −A.

B. Grounded Laplacian Matrix
Grounded Laplacian matrix is a variant of Laplacian matrix.

Deleted rows and columns corresponding to selected nodes in
nonempty set S of size k, grounded Laplacian matrix is the
principal submatrix of Laplacian matrix L with size of (n −
k)× (n− k). Let the grounded Laplacian matrix be L(S) for
compactness of notation, and L(S) is a symmetric diagonally-
dominant M-matrix(SDDM). The grounded Laplacian matrix
has wide range of applications in various field such as pinning
control [9], the convergence rate of a leader-follower opinion
dynamical systems [22], the H∞ norm of a system [27], and
so on.

For ease of notation, the smallest eigenvalue of grounded
Laplacian matrix, which is the focus of this work, is simplified
as λ(S) = λ(L(S)) > 0. And the eigenvector corresponding
to the λ(S) is denoted as u , which can be nonnegative
according to Perron-Frobenius theorem [31].

We define two operations on the grounded Laplacian matrix
L(S): node removal and edge removal, which are closely
related to the problem we are studying. We will see an increase
in the smallest eigenvalue after these two operations.

Definition 3.1 (Node removal): For a graph G = (V,E), a
set S ⊂ V and any node i ∈ V \S, the new grounded Laplacian
matrix after removing node i is defined as L(S+ i), which is
a principle submatrix of L(S).

The smallest eigenvalue increases λS(i) = λ(S + i) −
λ(S) ≥ 0 after node removal according to Cauchy’s inter-
lacing theorem[32]. More specifically, if node i connects to
any unselected node, then λS(i) > 0 holds.

Definition 3.2 (Edge removal): For a graph G = (V,E), a
set S ⊂ V and any edge e = (i, j) ∈ (V \S)×(V \S), the new
grounded Laplacian matrix after removing edge e is defined
as

L(S + e) = L(S) + E ij + E ji.



3

The smallest eigenvalue varies with λS(e) = λ(S + e) −
λ(S), which is a positive value.

C. Submodular Function

We give a brief definition of monotone non-decreasing and
submodular set functions. For a set S, we use S+u to denote
S ∪ {u}.

Definition 3.3 (Monotonicity): A set function f : 2V → R
is monotone non-decreasing if f(S) ≤ f(T ) holds for all
S ⊆ T .

Definition 3.4 (Submodularity): A set function f : 2V → R
is submodular if

f(S + u)− f(S) ≥ f(T + u)− f(T )

holds for all S ⊆ T ⊆ V and u ∈ V .

IV. PROBLEM FORMULATION

Based on above sections, the widespread applications of
the smallest eigenvalue of have been stated. Especially the
smallest eigenvalue λ(S) can be employed to evaluate the
control effectiveness, quantify the convergence rate of con-
sensus system and measure the robustness of a system. In
this section, we introduce the eigenvalue optimization problem
under limited control nodes, which is hard to solve as follows.

A. Problem Statement

The node removal operation indicates that adding a new
node to the control set causes the increase of the smallest
eigenvalue of the corresponding grounded Laplacian matrix.
So we propose the problem of maximizing the smallest eigen-
value subject to a cardinality constraint |S| ≤ k, which is
stated below.

Problem 1 (Smallest Eigenvalue Optimization): Given a
unweighted, undirected and connected network G = (V,E),
we aim to find a subset S ⊂ V with k nodes so that the
smallest eigenvalue of the grounded Laplacian matrix L(S) is
maximized. The problem can be formulated as

S∗ = arg max
S⊂V,|S|≤k

λ(S).

The optimization Problem 1 is not easy to handle, especially
the objective function of the study is the smallest eigenvalue
of the matrix. So we will give three examples to take a deeper
look at some of its interesting properties.

B. Weak strictly monotonicity

For graphs that are specially structured, such as star graphs,
after selecting the central node, selecting more nodes does
not increase the smallest eigenvalue. As shown in Fig. 1, the
result of the corresponding optimal solution is the same for k
ranging from 1 to 7, because central node 1 is always selected
in the optimal solution.

However, for general graphs, it is difficult to select a small
number of nodes that makes picking more nodes useless,
especially for k � n. The node removal operation have told
us unless the new added node is not adjacent to the unselected

1
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Figure 1: An example of a star graph

node, the smallest eigenvalue of the grounded Laplacian matrix
will strictly increase after adding this new node. It is almost
impossible for the selected nodes to be the optimal solution
of the problem if they are closely adjacent to each other.
So we call this strictly monotone increase as weak strictly
monotone increase, where the strict monotonicity is satisfied
under certain conditions but can be easily achieved in the
real situation of this problem. Thus optimization Problem 1
is equivalent to the combinatorial optimization problem stated
below.

Problem 2: Given a unweighted, undirected and connected
network G = (V,E), we aim to find a subset S ⊂ V
with k nodes so that the smallest eigenvalue of the grounded
Laplacian matrix L(S) is maximized. The problem can be
formulated as

S∗ = arg max
S⊂V,|S|=k

λ(S).

C. Node centrality incompatibility
For each node i, we define a centrality λ(i) based on the

smallest eigenvalue of the grounded Laplacian matrix, where
the most central node can lead to the largest change in the
smallest eigenvalue. For example, in Fig. 2, node 6 is the most
central node and if we select only one node, the selection of
7 is the best choice. Compared with other traditional node
centrality, such as degree centrality, eigenvector centrality,
closeness centrality and some other node centrality, node 6
is the most central node based on their standards. As the
scale of this graph gets larger, that is, there are more and the
same number of nodes in the star graph on the left and in the
line graph on the right, many node centrality such as degree
centrality will still consider the center of the star graph to be
the most important node in this graph, but the node that gives
the largest value of the smallest eigenvalue of the grounded
Laplacian matrix will be gradually shifted to the right.

1
2
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5

6 7 8 9 10 11

Figure 2: An example of a star-line graph

Although this new node centrality seems better than other
node centralities, however, simply select top-k central nodes
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based on this approach may ignore their global relevance, and
it may significantly reduce the effectiveness of picking them
together when k is large. We can see that in Fig. 2, the second
central node based on λ(i) is node 6, but the selection of node
6 and node 7 is not the optimal solution, since they are too
close to each other, they are not fully functional in terms of
contribution to the overall network.

So we define the centrality of a group of nodes by λ(S)
to overcome the limitations imposed by the centrality of a
single node. When we add a new node i into the set S,
λS(i) can measure the importance of node i based on the
previously selected set of nodes, which may far from λ(i).
Unlike the node centrality, this set centrality can better capture
its properties and our problem turns to find a most important
node set subject to the constraint k.

D. Non-submodularity

For a combinatorial optimization problem, finding the ap-
propriate properties is crucial to help us solve it effectively.
Submodularity is one of the key properties, with this property,
one can propose a simple greedy algorithm by optimizing the
objective function with one element in each iteration. And it
yields a solution with 1−e−1 approximation ratio [33], which
has been widely used in combinatorial optimization problems
and has effectively solved many NP-hard problems in recent
years.

However, there are still plenty of issues that do not satisfy
this property, this greatly increases the difficulty of solving
such problems. In our SMALLEST EIGENVALUE OPTIMIZA-
TION problem, the objective function is not submodular. To
show its non-submodularity, we give an example of a line
graph with 7 nodes in Fig. 3.

1 2 3 4 5 6 7

Figure 3: An example of a line graph

Set A = {1}, B = {1, 2} and v = 6. We can simply calculate
that

λ(A) = 0.0581, λ(A+ v) = 0.3820,

λ(B) = 0.0810, λ(B + v) = 0.5858,

thus

λ(A+ v)− λ(A) = 0.3239 < 0.5048 = λ(B + v)− λ(B).

Therefore, the objective function in SMALLEST EIGENVALUE
OPTIMIZATION problem is non-submodular.

E. Optimal solution lacks correlation

Another weird nature of this problem is the optimal solution
lacks correlation, that is for k = x and k = x + 1, where x
is a positive integer, the optimal solution for each case may
be quite different. We can see from Fig. 3, the selection of
node 4 is the solution for k = 1 while the selection of node 3
and node 5 is an optimal solution when k = 2, but for k = 3,
the selection of node 2, node 4 and node 6 is the optimal

solution. The optimal solutions corresponding to adjacent k
lack some correlation, which may lead to the fact that when
we take a node-by-node selection approach, even if we achieve
optimality at each step, there is bound to be a certain gap with
the optimal solution.

F. Hardness of the problem

Next, we show the hardness of our SMALLEST EIGEN-
VALUE OPTIMIZATION problem.

Theorem 4.1: The SMALLEST EIGENVALUE OPTIMIZA-
TION problem is NP-hard.

Proof. We consider the decision version of the problem as:
given graph G and an integer k to find a set S of k grounded
nodes to ensure the λ(S) ≥ t. And it suffices to establish
the theorem for t = 3 and G as a 3-regular graph. Since the
problem is apparently in NP: given set S, we can check in
poly-time if λ(S) is less than 3 or not, we only need to prove
the NP-completeness.

We reduce the problem from vertex cover problem, which
is defined to find a set of nodes where every edge has at least
one endpoint in.

First if S is a vertex cover of G, then V \S is an independent
set of G, which means there is no edges connecting any pair
of nodes in V \S. It follows that L(S) is a diagonal matrix
with diagonal entries being 3. Therefore λ(S) = 3.

Second we prove it by contradiction. Suppose λ(S) ≥ 3
while set S is not vertex cover then V \S is not independent
set. Thus V \S includes nodes adjacent to nodes in V \S. Then
L can be represented as:

L =

(
L1 0
0 L2

)
,

where L1 includes nodes which are not adjacent with nodes in
V \S; therefore L1 is a diagonal matrix with diagonal entries
being 3. Oppositely, L2 is a connected component. Then a
lemma is proposed to support the proof.

Lemma 4.2: If set S is not the vertex cover of graph G, the
trace of L(S)−1 is larger than n−k

3 .
Proof. If S is not V C(G, k), the inverse of L(S) is(

L−11 0

0 L−12

)
, (1)

For each node v ∈ A, its degree dv is 3. Then we can write
L2 into block form as

L2 =

(
du −bT
−b B

)
, (2)

where
(
du
−b

)
is the colomn corresponding to the node v and

B denote the corrosponding principal submatrix. By block-
wise matrix inversion we have (L−12 )u = 1/

(
du − bTB−1b

)
.

Because B is positive definite and b is not a zero vector (since
A is a connected component), bTB−1b > 0, which gives that
1/
(
du − bTB−1b

)
> 1/du = 1/3. Then Tr

(
L−12

)
> |A|/3.

And the trace of L−11 equals to (n−|A|−k)/3. In all, the trace
of L(S)−1 is larger than n−k

3 . � According to lemma 4.2,
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the smallest eigenvalue of L(S) is smaller than 3 which leads
to a contradiction, because

λ(L(S)) =
1

λmax(L(S)−1)
≤ n− k

Tr ((L(S)−1))
< 3,

which completes the proof. �

G. A simple heuristic algorithm

Since Problem 1 is a combinatorial problem, and we can
naturally think of a simple solution. For each possible case
where k nodes are selected in a set S, we calculate the smallest
eigenvalue of the grounded Laplacian matrix generated by
the set S separately and output the S∗ which maximize the
smallest eigenvalue. Obviously, this approach fails when n or
k is slightly larger since the time complexity of it is O(

(
n
k

)
m).

So due to the NP-hardness of the problem, we propose
a greedy heuristic algorithm by optimizing the increment
of the smallest eigenvalue for each step. Although there is
no guarantee of error factor, we can still see in the later
experiments that this method has a huge advantage over other
schemes. All the operation we need here is Node Removal.
First, the set S is set to be empty, then k nodes are added
from set V \S step by step. In each iteration, for each i /∈ S,
we need to calculate the increment of the smallest eigenvalue
λS(i) = λ(S + i) − λ(S). The smallest eigenvalue of a
grounded Laplacian matrix can be calculated by the numerical
method in O(m) time, thus a direct implementation of this
approach takes O(knm) time. The above analysis leads to
our simple heuristic algorithm EXACT(G, k), as outlined in
Algorithm 1.

Algorithm 1: EXACT(G, k)

Input : A graph G = (V,E); an integer k ≤ |V |
Output : S: a subset of V with |S| = k

1 Initialize solution S = ∅
2 for i = 1 to k do
3 Compute λS(j) = λ(S + j)− λ(S) for each j /∈ S
4 Select s s.t. s← arg maxj∈V \SλS(j)

5 Update solution S ← S + s

6 return S

V. LINEAR TIME APPROXIMATION ALGORITHM

However, the simple algorithm takes too much time and is
not feasible for large-scale network. The main difficulty is how
to quickly calculate the increment of the smallest eigenvalue.
So we select the nodes from two different perspectives.

Instead of removing a node directly, we consider the influ-
ence of removing an edge on the smallest eigenvalue from both
continuous and discrete ways, which are derivative and matrix
perturbation. And then we give a reasonable explanation to
select a control node.

A. Derivative-based analysis

The derivative represents the change rate of a function.
Similarly, if an element is changed in a matrix, the change
rate of a function that maps a graph to a real number can also
be defined by derivative. In some previous works [34], [35],
[36], some authors use derivatives to measure the importance
of an edge on a certain quantity. Although our task is to select
several nodes, measure the importance of a node based on the
sum of edges’ importance incident to it is a normal practise.
So for a matrix L and each edge e = (i, j) ∈ E, we fist define
the derivative matrix as B(e) = ∂λ

∂Lij
.

Lemma 5.1: Given a graph G = (V,E) with Laplacian
matrix L, let S ⊂ V be a node set. The smallest eigenvalue-
eigenvector pair of L(S) is defined as (λ,u). Then for any
edge e = (i, j) ∈ E ∩ (V \S)× (V \S), we have

B ij = B(e) =
∂λ

∂L(S)ij
= u iuj .

Proof. According to the properties of the eigenvector u ,
we have L(S)u = λu . Take a derivative of this equation, we
have

∂L(S)

∂L(S)ij
u + L(S)

∂u

∂L(S)ij
=

∂λ

∂L(S)ij
u + λ

∂u

∂L(S)ij
.

Left multiplying u> on both side yields B ij = ∂λ
∂L(S)ij

=
u iuj . �
B ij can be regarded as the change rate of λ(S) when the

element of L(S)ij is altered. We can think intuitively that the
importance of each node is equal to the sum of the importance
of the edge adjacent to it. So the change rate of λ(S) after
removing node i can be defined as

C1(i) =
∑

j∈Ni−S
B ij = u i

∑
j∈Ni−S

uj . (3)

B. Perturbation-based analysis

In another way, we can use the matrix perturbation the-
ory [37] to get the change of the eigenvalue after perturbing
a few elements in a matrix. Node removal operation has poor
performance since too many elements may change including
both diagonal and non-diagonal elements. So instead of di-
rectly removing row and column corresponding to node i from
the original matrix, we start from the simplest case, where only
one edge is removed by edge removal operation. We show the
increment of the smallest eigenvalue more precisely based on
the matrix perturbation theory. So our matrix perturbation is
given in following steps.

Lemma 5.2: Let G = (V,E) be a connected graph and
L be its Laplacian matrix, let S ⊂ V be a node set. For
the matrix L(S), we define (λ,u) be its smallest eigenvalue-
eigenvector pair. For any edge e = (i, j) ∈ E ∩ (V \S) ×
(V \S), define ∆L(S) = E ij+E ji, we can perturb the matrix
L(S) with ∆L(S). λ varies with ∆λ and u varies with ∆u
after perturbing. We have

(L(S) + ∆L(S))(u + ∆u) = (λ+ ∆λ)(u + ∆u), (4)
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and the eigen-change for the smallest eigenvalue can be
approximated by

∆λ ≈ 2u iuj > 0.

Proof. Left multiplying u> on both side in Eq. (4), we have

u>∆L(S)u + u>∆L(S)∆u = u>∆λu + u>∆λ∆u .

The eigen-gap for the smallest eigenvalue is

∆λ =
u>∆L(S)û

u>û
=

u iûj + ujû i
u>û

,

where û = u + ∆u .
For a large scale network, the removal of one edge has very

small influence on the network, and it does not influence the
eigenvector u too much, which means ∆u ≈ 0 [38], [39],
[40]. Hence

∆λ ≈ 2u iuj > 0,

which is consistent with the properties of the edge removal
operation. �

If we repeat the operation of edge removal on all the edges
incident to node i, then the Lemma 5.2 can be extended to the
following form.

Lemma 5.3: Let G = (V,E) be a connected graph and L be
its Laplacian matrix, let S ⊂ V be a node set. For the matrix
L(S), we define (λ,u) be its smallest eigenvalue-eigenvector
pair. For any node i ∈ V \S, define ∆L̄(S) =

∑
j∈Ni−S E ij+

E ji, we can perturb the matrix L(S) with ∆L̄(S). λ varies
with ∆λ̄ and u varies with ∆ū after perturbing. We have

(L(S) + ∆L̄(S))(u + ∆ū) = (λ+ ∆λ̄)(u + ∆ū),

and the eigen-gap for the smallest eigenvalue can be approx-
imated by

∆λ̄ ≈ 2u i
∑

j∈Ni−S
uj > 0.

According to Lemma 5.3, if we add a new node i into set
S, then λ+ ∆λ̄ equals to λ(S+ i) when λ(S+ i) < di. Thus
maximization λ(S+i) equals to maximization ∆λ̄. According
to Lemma 5.3, the increment of the smallest eigenvalue by
removing the edge adjacent to node i can be defined as

C2(i) ≈ 2u i
∑

j∈Ni−S
uj . (5)

Remark 5.4: Comparing Eqs. (3) and (5), we find that
they are the same when the coefficients are ignored. Without
directly calculating the influence of removing one node, we
operate on each edge in continuous and discrete ways to get
the importance of each node. The conclusion that the two
expressions are consistent exhibits the coherence between two
methods. So in the following parts, we will use

C(i) = u i
∑

j∈Ni−S
uj (6)

to denote the importance of node i based on the matrix L(S),
where u is the eigenvector corresponding to the smallest
eigenvalue of L(S).

Remark 5.5: If S is an empty set, it is apparent that
the smallest eigenvalue of L(S) is 0, and the corresponding

Algorithm 2: APPROXVECTOR(M , ε)

Input : A SDDM matrix M ; an error parameter
0 < ε < 1

Output : u : an approximation of the smallest
eigenvector of the matrix M

1 Initialize vector u , v = 1>

2 Set error e = 1
3 while e > ε do
4 u = v
5 v = SOLVE(M ,u , ε)
6 v = v

‖v‖∞
7 e = ‖u − v‖∞
8 return u

eigenvector is u = 1. Hence the importance of each node
equals to the degree of node i if we neglect the coefficient,
which is consistent with the conclusion in [9] that selecting
nodes with large degrees is a good solution when only a few
number of nodes can be controlled.

C. Fast Algorithm

Based on prior analysis, the optimization of λ(S) is reduced
to the computation of the corresponding eigenvector u . Before
presenting our fast algorithm, we compare two methods for
eigenvector computation.

1) Power Iteration Method: A classical method to calculate
the leading eigenvector of a matrix is power iteration method.
To employ this method, the L(S) matrix is transformed to
M = xI − L(S). The choice of x will largely affect the
speed of the calculation. One may think λmax(L(S)) is a
proper choice, where λmax(L(S)) is the largest eigenvalue of
the matrix L(S). However, relative to the smallest and second
smallest eigenvalues λ1, λ2 of L(S), λmax(L(S)) is still too
large, resulting in a very slow iteration rate.

2) Approximate Eigenvector: Another method to obtain an
estimate of u without the expense of computing the complete
eigensystem is proposed in [41], [42], [43], where the smallest
eigenvector of a SDDM matrix L(S) can be solved in nearly
linear time based on Lemma 5.6 and inverse power method.
For consistency of structure, we first show the Solver.

Lemma 5.6: There is a nearly linear time solver x =
SOLVE(S ,y , ε) which takes a symmetric positive semi-
definite matrix Sn×n with m nonzero entries, a vector b ∈ Rn,
and an error parameter δ > 0, and returns a vector x ∈ Rn
satisfying

∥∥x − S−1y
∥∥
S
≤ δ

∥∥S−1y∥∥
S

with high probabil-

ity, where ‖x‖S
def
=
√
x>Sx . The solver runs in expected

time Õ(m), where Õ(·) notation suppresses the poly(log n)
factors.

Algorithm 2 combines the Solver into the inverse power
method, which avoids inverting the matrix M directly and
greatly improves the efficiency of calculations. Since the
setting of parameters is not the focus of our study in the
approximation calculation, in line 5, we simply set the error
parameter in the Solver to ε, while specific details can be
found in [43]. Also, we know that the smallest eigenvalue of
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Algorithm 3: APPROX(G, k, ε)
Input : A graph G = (V,E); an integer k < |V |;

an error parameter ε > 0
Output : S: a subset of V with |S| = k

1 Initialize solution S = ∅
2 Let L be the Laplacian matrix of graph G
3 for i = 1 to k do
4 u = APPROXVECTOR(L(S), ε)
5 Compute C(j) = uj

∑
t∈Nj−S u t for each j /∈ S

6 Select s s.t. s← arg maxj∈V \SC(j)

7 Update solution S ← S ∪ s
8 return S

the matrix L(S) is close to 0, leading to very few iterations,
even one iteration can get a fairly good approximation.

Avoiding directly calculating ∆λ for each node, we now
present a Õ(km)-time approximation algorithm APPROX for
the problem as outlined in Algorithm 3, which is a simple
adjustment made on the basis of algorithm EXACT.

VI. EXPERIMENTS

In this section, we show our algorithms’ fairly good per-
formance on diverse real world networks. Without loss of
generosity, we choose connected networks with scale ranging
up to million from KONECT [44] and SNAP1. Related infor-
mation of these networks is shown in Table I, where networks
are shown in increasing order of their numbers of nodes.

We implement our algorithm with Julia to use the SDDM
solver SOLVE in Julia’s Laplacian.jl package, and the error
parameter ε is set to 0.01 in the subsequent experiments. We
run our experiments on a Linux box with 4.2 GHz Intel i7-
7700 CPU and 32G memory, using a single thread.

A. Accuracy of Eigen-gap Approximation

To begin with, we evaluate the approximation of eigen-gap
∆λ mentioned in Eq. (6) and compare it with accurate eigen-
gap ∆λ for each node. We conduct the experiments on four
network: Dolphins, Tribes, Karate and Email-univ. To measure
the accuracy of our eigen-gap evaluation, we randomly select
five nodes to be grounded firstly and then delete one more
node to compute the accurate eigen-gap and C(i) caused by its
removal. According to Fig. 5, the accurate eigen-gap is linearly
proportional to our estimate, which justifies our estimate.

B. Effectiveness

We display our algorithm’s fairly good performance on
diverse real life network here. The experiment results on
small network, medium network and enormous network are
displayed and analyzed.

The methods which we compare with are introduced as
follows, inspired by the preceding node selection strategies
from pinning control studies.

1https://snap.stanford.edu

Table I: Information about the networks with n vertices and
m edges.

Network n m

1 Tribes 16 58
2 Firm-Hi-Tech 33 147
3 Karate 34 78
4 Dolphins 62 159
5 685-bus 685 1282
6 Email-Univ 1133 5451
7 Bcspwr09 1723 2394
8 Routers-RF 2113 6632
9 US-Grid 4941 6594

10 Bcspwr10 5300 8271
11 Pages-Government 7057 89 455
12 WHOIS 7476 56 943
13 Pretty Good Privacy 10 680 24 340
14 Anybeat 12 645 67 053
15 Webbase-2001 16 062 25 593
16 As-CAIDA2007 26 475 53 381
17 Epinions 26 588 100 120
18 Email-EU 32 430 54 397
19 Internet-As 40 164 85 123
20 P2P-Gnutella 62 561 147 878
21 RL-Caida 190 914 607 610
22 DBLP-2010 226 413 716 460
23 Twitter-follows 404 719 713 319
24 Delicious 536 108 1 365 961
25 FourSquare 639 014 3 214 986
26 Youtube-Snap 1 134 890 2 987 624

Figure 4: Eigen-gap approximation by C(i) compared with
accurate eigen-gap ∆λ, to show the approximate linear relation
on four small networks: (a)Dolphins, (b)Tribes, (c)Karate,
(d)Email-Univ.

1) Optimum: choose k nodes in the set S that maximize
λ(S) by exhaustive search.

2) Degree: choose k nodes with largest degree.
3) Eigenvector: choose k nodes based on highest eigenvec-

tor centrality.
4) Betweenness: choose k nodes based on highest between-

ness centrality.
5) Closeness: choose k nodes based on hightest closeness

centrality.
6) Exact: choose k nodes returned by Algorithm 1.
7) Approx: choose k nodes returned by Algorithm 3.
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Figure 5: λ(S) given by APPROX, EXACT, max-degree
scheme, and the optimum result associated with k ranging
from 1 to 5 on four small nework: (a) Dolphins, (b) Tribes,
(c) Karate and (d) Firm-Hi-Tech.

Experiments are first conducted on four small networks:
Dolphins, Tribes, Karate and Firm-Hi-Tech. In Fig. 5, we
display the effectiveness of our algorithms by comparing our
two proposed algorithms with optimum results and max-degree
scheme on networks with nodes number less than 100. Due to
the exponential time required to compute the optimal solution,
we only take k to a maximum of 5 in this experiment. As Fig. 5
shows, our algorithms EXACT and APPROX are close to the
optimum results and better than max-degree scheme.

In order to better show the advantages of our algorithm, we
compare APPROX with four other methods: Degree, Eigen-
vector, Betweenness and Closeness, in the case of choosing
k = 1, 2, . . . , 100 nodes. A comparison of results for these
four algorithms is shown in Fig. 6. These four baselines
are common node centrality, measure the importance of each
node separately. In some special cases, such as Fig. 6(e), the
schemes based on the degree centrality and the betweenness
centrality have a better performance when k is less than 20.
Since these two methods have been extensively studied in the
past, it is reasonable that they have good results with fewer
control nodes.

However, for a set of nodes, it is not wise to rely on them
alone for selection because they can only obtain information
about each node and cannot consider the correlation between
nodes in the set in a comprehensive way. And we can assert
that no matter how well a node centrality captures global and
local information about the network, relying solely on node
centrality, or adapting it accordingly for different networks,
does not work very well when k is large.

We find that other schemes may have a better performance
when very few nodes are selected, however, our method is
able to keep the results growing rapidly. Because our method
places more emphasis on the centrality of the set, we focus
on maximizing the centrality of the set at each step, even
if each node is added to the set one at a time. It signifies

Figure 6: λ(S) given by APPROX compares with other cen-
trality such as degree, eigenvector, betweenness and closeness
with k ranging from 1 to 100 on six medium nework: (a)
Pages-Government, (b)US-Grid, (c) Anybeat, (d) WHOIS, (e)
Pretty Good Privacy and (f) Epinions.

that the nodes selected by our algorithm are meaningful and
outperforms picking nodes based on a certain metric in one
step.

When the scale of the networks grows up, very few methods
can be applied due to the amount of time and space required.
Our algorithm APPROX can easily handle this situation by
virtue of its nearly linear time complexity. And degree based
approach has the time complexity of O(n), and due to its
effectiveness according to some existing research results, so
we compare our method with Degree method on four networks
with size ranging from 200,000 to 1,000,000. The comparison
is shown in Fig. 7.

After the initial selection of a very small number of nodes
with the largest degree, the effects in Figs. 7(b) and (c) show
that the remaining nodes are difficult to play a more effective
role. And Fig. 7(d) shows even though Degree approach is
possible to achieve the same effect as our method in the first
10 nodes, the selection of the next 90 nodes hardly allows
further improvement of the results. Although Degree approach
is superior to our method in terms of speed, it produces a
certain gap in effectiveness.

C. Efficiency

Although we have analyzed the time complexity of our two
algorithms, we experimentally compare how much time they
take for each step. We now show that algorithm APPROX runs
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Figure 7: λ(S) given by APPROX and max-degree scheme
with k ranging from 1 to 100 on four enormous nework: (a)
RL-Caida, (b) Delicious, (c) Youtube-Snap, (d) FourSquare.

Table II: Average running time for computing ∆λ
and C(i) of all nodes on a larger set of real-world
networks of each iteration and their ratio.

Network Time (seconds)

EXACT APPROX Ratio

685-bus 4.73 0.004 1182
Bcspwr09 22.60 0.011 2054

Routers-RF 52.15 0.046 1133
Bcspwr10 318.4 0.044 7236

Webbase-2001 2613 0.134 19500
As-Caida2007 5308 0.261 20337

Epinions 4931 0.229 21532
Email-EU 7148 0.126 56730

Internet-as* - 0.227 -
P2P-gnutella* - 0.482 -

RL-caida* - 1.992 -
DBLP-2010* - 2.141 -

Twitter-follows* - 2.292 -
Delicious* - 4.731 -

FourSquare* - 10.95 -
Youtube-snap* - 10.82 -

much faster than algorithm EXACT, especially on large-scale
networks. We average the time taken for each iteration of each
network. From Table II, we find that for the network with
more than 40,000 nodes, which are marked with ∗, algorithm
EXACT fails due to its tremendous time cost, while algorithm
APPROX takes only a few seconds for each iteration even on
the network with over one million nodes.

Also, we compare the two methods for computing the
eigenvectors, as shown in Table III, although the theoretical
time complexity is nearly the same, we can find that the
method using Solver and the inverse power method is far
superior to the method using the power method due to the
influence of the number of iterations and the computational
accuracy required. To get a more precise approximation, power
method is likely to take a lot of time, and it fails on large-
scaled network. For the large scaled networks, our method
also provides a great convenience for computing the smallest
eigenvectors of the SDDM matrix.

Table III: Average running time for computing the smallest
eigenvector by power method and inverse power method on
a larger set of real-world networks of each iteration and their
ratio.

Network Time (seconds)

Power Method Inverse Power Method Ratio

685-bus 0.030 0.012 2.5
Bcspwr09 0.057 0.004 14.25

Routers-RF 0.047 0.012 3.92
Bcspwr10 0.122 0.019 6.42
Epinions 1.082 0.160 6.76
Email-EU 0.687 0.068 10.10

P2P-gnutella* 1.091 0.359 3.04

VII. CONCLUSIONS
In this paper, we study the smallest eigenvalue optimization

problem for grounded Laplacian matrix with n nodes and
m edges by selecting k grounded nodes. Due to the wide
range of applications in many fields, such as system control,
convergence rate and the robustness of a system, while lack
of effective and efficient approaches to solve this problem,
we study this one problem in depth manner. Theoretically, we
provide rigorous proofs of this problem’s NP-hardness and
non-submodularity. The complexity of the problem makes it
difficult to generalize the solution to a large-scale network by
directly computing the optimal solution. So we propose an
efficient and generalizable algorithm to select limited nodes
to maximize the smallest eigenvalue in Õ(km) time. Finally,
we conduct diverse experiments on a large number of real
networks of different sizes to demonstrate the superiority of
our algorithm.
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